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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL NOTE NO. 171.

COMPRESSIVE STRENGTH OF TAPERED AIRPLANE STRUTS.*

By Viktor Lewe.

Contents.- Methods are here given for ascertaining the value

of n in Euler's simplified formula, P =n EL for the com-

2’
pressive strength of tapered airplane struts, by estimating from

curves and by calculation.

I. Approximate Method bv Means of a Set of Curves.

The effort to make, all parts of airplanes as light as possi-
ble, and with the minimum air resistance, leads to the employ-
ment of posts or struts with their maximum section in the middle
and tapered toward the ends. The question of the best longitudi-
nal section of such struts has already been discussed.** Design
and materiel often do not, however, permit reliance on the shapes
therein prescribed and the assumpition there set forth, in accord-
ance with the rules of the calculus of variations, that the
weight alone, or the head resistance plus a fraction of the
weight should reach a minimum, is not completely established and

is certainly controvertible, as may be seen from differences in

* From Technische Berichte, Volume III, No.7 (1918), pp. 279-381.
** Zeitschrift flir Mathematik und PhYSlk Volume 62, No.2, "Triger
kleinster Durchbiegung und Stibe grosster Knlckfestlgkelt "bei geg-
ebenem Materiel Verbrauch" ("Girders of Minimum Deflection and
Struts of Maximum Compressive Strength for a Given Amount of Ma-
terial). Zeitschrift fur Flugtechnik und Motorluftschiffahrt,igis,
Nos. 5-6, Kirste: "Das ginstigste Langsprofll verjungter Flugzeug—

streben" ("The Most Favorable Longitudinal Section for Tapered
Airplane Struts").



she papers quoted. It would, therefore, appear more suitable to
give the method of calculation for an arbitrarily chosen form of
strut. Two methods are here erployed.

According to the first method, the course of the moments of
inertia, for the cross-sections of the symmetrically built struts,
is determined from the center to the end, then divided by the mo-
ment of inmertia (I,) of the cross-section at the center, and the
curve thus obtained is comparecd with the set of curves in Fig. 1.
When a curve of similar form is found, the characteristic number

of the curve is inserted instead of n in the well~¥nown Euler

formala,

B =n Eflm (1)

for compressive loads and the compressive load Py is obtained,
depending on the variation of the moments of inertia =n, the
modulus of elasticity E, the moment of inertia of the cross-
section at the center of the strut I,, and the length of the
stfut 1. The compressive loads for the same cross—section in
the center are proportional to the numbers, n. A comparison of_
the curves shows that the values of the characteristic number n,
for two curves are approximately equal, when they enclose equal
areas.

The differential equation for the line of flexure of a bent
rod with variable moment of inertia I(£), in which £ = T,

l = the length of the rod, and x = the distance of any given

voint from the center of the rod, is
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The solution is v = f(£) with the assumption that

T(¢) = - £(8) P2 (3)

T{E) B

h

I7 the ghave of the line of flexure is taken arbitrarily as
£(t), +then we obiain, from equation (3}, for any shave of the
line of flexure, the corresponding course of the moments of in-

ertia. If I(¢) = I, f(¢) end £(§) =1 for £ = 0, we obtain

_ _ _£{0) p3* 3
Im 1(0) E (3a)
and if we then assume - ff 8 = %3 we obtain a compression for-
mila similar to Euler's formula
EI
Pk=n——1'2—m

The curves shown in Fig. 1 are obtained in this way. The
number on each curve is the value of n which must be inserted,
together with the moment of inertia of the centrel section I,
in equation (1), in order to obtain the compressive load Py.
If curves with the same n are compared, it is obvious that a
greater thickness at the center of a strut must be offset by a
corresponding reduction toward toward the ends. Regarding the

use of the diagram, the example given below is referred to.
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ITI. Calculation Method.

If a series of momenis of inertia I, I,, L, ... of the ",
strut at the points &,, £, & ... is known, it may be consid-
ered as Trepresented by a curve I(£). By dividing equation (3)

by equation (3a), we obtain

and with £F(E) =1 +at + ot +ct ... (5)
we obtain
£0) .1 __1 (6)
4 (0) 22, n

As the first equation of condition, we obtain f£(£) = O when

3 1

= '2-', (0 4

1+a-b+b-lg+o—t+ ceoen- =0 (7)
1f % = - k, then we obtain from equation {4)
. [ [-1
1 +a(2k + £ +b(18k £ + £°) + o(30x & + ED)+...= 0 (8)

or, by subiracting equation (7) from equation (8),

a(2k+§2-%-z>+b(12k £2+E4-%—¢>+ o
+ e (_SOkE4 + t°- %g)-+... = 0.

We can now form as many equations (9) as there are moments
of inertia I,, I,, I given and we can find, from equations

(7) and (9), a number of unknown quantities (a, b, ¢ .--) one moTre
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than. the given moments of inertia, e.g. with I,, L, and I, given,

we can find the quantities 4, c, b, a and we finally obtain an

equation between a and %k, or, if we ingert n = - 2a and

k

=
3
i

=, we obtain the relation sought between n and 1. If (be-

sides Ip) one other moment of inertia is given, we put

c=d= ... =0 and, in equation (7), from equation (9)
2
b = 2k + t° - &
- &
12k E° + ¢ - &
. i I
and, with a=-2 k=23 i=3=
] 2’ n’ Im’
n . n 3 %l+ £ - %-e 0
< R ? S Ty 4 3 - =
. we obtain 1 >° 5 12)(34 _;:l_ Ez T o* Eq, _ 1

2
2 %
1-i+041¢°-1688%— JS(1-i+2341E -16L ) -
~4 g“

and, from this, n =

(10)

/_(t2-4£“) 32-121 &2

When £ = %, we obtain

n = 10.671 + 20.0 - ./ 113.81® - 85.31 + 400 (11)

If two other moments of inertia, I, and I,, aTe given at the

points £, and £, we have, for a, b, ¢, the equgtibns

a (2K, + &° - %—2->+ b (1%, £E2 o+ £, - 12'—4->+

4 6 _
+ o (80K 4" + & - V=0

o



a (8% + & —%z->+'b (12%, £° + 52‘--21—,;>+
+C<3’Ok2 E24;+ Eas —28'1'}:0
1 1 o 1 = -
a,—g-@ +'b-21 +.,26 1

i 2 i 2 4 i 4 5
3 -+ &, 13—111—21 + &, B0 RE o+ £,
E - =
®laiz 4 g2 qa i e+ £* z0lr £+ £°
n 2 2 2 n 2 2
1 1 1
2* 2 2°
- 1 2 4 1 i 4 € 1
= 123 £+ 87 - 5= 30#E1+€1-§-g

(12)

. The best way to solve equation (12) is by trial: by first insert-
ing two approximate values from the diagram, or ascertaining by

means of equation (10) or (11), the correct value of the root ac-
cording %o the rules for approximation, or by reversion {(Yregula
falsi®). + must be observed that here only one particular root
is correct in equations (11) and (12). Before the square root of
equations (10) and (11) the minus sign muist be placed, since,
otherwise, the corresponding curve f(&) would have negative

Talues.
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Exaymie.~ Let a Sablatnig gtru®, 300 om (78.74 in) long, bave
a mortent of inertia at the center of 70 em*® (1.88 in*). At a dis-
tance of 40 cm (15.75 in) from the center the moment of inertia
is 62 om® (1.49 in*) and at a distance of 70 em (27.56 in), it is

33 em®* (.79 in*). Accordingly, with the above symbols, we have

Iy = 70

3 =.6_2.= - =&'= =
i, = $5 = 0.885, £, 255 = 0-2
i, = 22 = 0.473, £, = 12~ =0.35

If the points corresponding to the coordinates i and £ are
plotted in the diagram, the value of n 1is found to be approxi-

mately 8.1. If the two points are joined by a curve, it will be
1
£

=7, at 1=0.765 and

found to intersect the straight line

we obtain, from equation (11)

2

n = 10.67 X 0.785 + 20 - V/113'8 x 0.765

n = 8.15. -/ -85.3 x 0.765 + 400

If 8.1 is inserted in equation (12), we obtain:

0.258 0.0533 0.00532
4.05 (0.3385 ©0.1002 0.0320 | -
0.350 0.0625 0.0156
- 0.0085 0.0103
= 0.00003.
0.0377 0.01%5

The value n = 8.1 may, therefore, be considered sufficiently

exact and we obtain, as the compressive load on the strut,

P. = 8.1 380000 %X 70 - 3700 ke (3747.85 1b).
k 200° & § )

Tranglated by National Advisory Committee for Aeronautics.






